CMOS Angle Sensitive SPADs

Alyosha Molnar
Cornell University
Goal: Capture Many Dimensions Of Light

- Sub-sample 8-D “plenoptic function” $I(x,y,z,t,\theta,\phi,p,\lambda)$
 - Standard planar sensors give x,y not z.
 - Color filters get λ (with less resolution in x,y)
 - SPADs are great for getting time, t
 - Want to also get angle θ,ϕ and (less so) polarization p
Motivation: Lensless nearfield 3-D Imaging

Suspended luminous sources: localization, tracking

Current methods require a microscope and scanned focus

With angle, no microscope needed

Key is to capture local incident angle as well as intensity
Out-of-focus Spatial Structure Encoded in Angle

- Sharp image, undefined angle
- Blurred image, converging angles
- Blurred image, diverging angles

Identical intensity information
Distinct angle information
Outline

• Motivation
• **CMOS-integrated angle-sensitive pixels**
 • Basic structure
 • Angle-sensitive SPADs
• Application: Lensless, filterless 3-D FLIM
 • Localizing sources in 3-D volume w/o a lens
 • Combined with SPADs
• Application: Light-Field
 • 3-D photography: computational refocus, ranging and compression
 • Lensless far-field imaging
• Combining light-field + TOF?
Talbot effect:
Gratings create “self images”

H. F. Talbot (1800 – 1877)

Talbot Depth: \(Z_T = \frac{d^2}{\lambda} \)

Talbot Pattern Shifts With Angle

Goal is to measure this shift

0 degrees

10 degrees

Detector

Detector
Measuring Talbot pattern shifts

Add second grating (analyzer) and use the moire effect

0 degrees

10 degrees
Measuring Talbot patterns

If we sweep the incident angle:

Get a periodic output \(D_0 = I_0 (1 - m \cos(\beta \theta)) A(\theta) \)
Extracting Angle

\[D_0 = I_0 (1 - m \cos(\beta \theta)) A(\theta) \]
\[D_{1/4} = I_0 (1 + m \sin(\beta \theta)) A(\theta) \]
\[D_{1/2} = I_0 (1 + m \cos(\beta \theta)) A(\theta) \]
\[D_{3/4} = I_0 (1 - m \sin(\beta \theta)) A(\theta) \]

Intensity

\[I_0 A(\theta) = \frac{D_{1/2} + D_0}{2} = \frac{D_{1/4} + D_{3/4}}{2} \]

Incident angle

\[\theta = \frac{1}{\beta} \tan^{-1}\left(\frac{D_{1/4} - D_{3/4}}{D_{1/2} - D_0} \right) \]

Intensity: common mode, angle: differential mode
CMOS Angle Sensitive Pixel (ASP)

- Metal layers used for gratings
- First grating (M6) generates patterns
- Second grating (M3) is analyzer
- Typical CMOS structures below
Describing This Response

• Each curve can be described by:
 \[I = I_o A(\theta, \phi)[1 - m \cos(\beta(\theta \cos(\psi) + \phi \sin(\psi)) + \alpha)] \]

• Angular offset: \(\alpha \)
• Orientation: \(\psi \)
• Angular frequency: “\(\beta \)”
• Modulation depth: “\(m \)”
 • Impacts SNR especially

\[\theta \quad \alpha +90 \quad \psi +90 \quad \beta \times 2 \]

\[360^\circ / \beta \]
Physical trade-offs

• Angular response (for fixed ψ):
 \[I = I_o A(\theta, \phi)[1 - m\cos(\beta\theta + \alpha)] \]

• ψ: set by grating orientation
• α: phase set by grating offset
 • $\alpha = 2\pi \frac{\Delta x}{p}$
• β: Angular “frequency”, set by grating pitch d ($d \sim 2\lambda - 3\lambda$), Talbot order n:
 • $\beta \sim 2\pi \frac{d}{\lambda} n$, where $n = \text{round} \left(\frac{d^2}{\lambda} \right)$
• Modulation depth, m want to maximize
 • $m \propto \cos \left(2\pi \frac{v\lambda}{d^2} \right)$ (how close to Talbot)
 • $m \propto 1 - \frac{n}{\# \text{ gratings}}$
Angle-sensitive SPADS

- Interconnect layers:
 - Diffraction + analyzer gratings
 - Angle information
 - Wave-description

- Semiconductor layers:
 - SPAD + support circuits
 - Time information
 - Particle description
Angle-sensitive SPADS

Caveat: Metal blocks light

• Bare minimum:
 • Each grating blocks ~ ½ of light
 • So QE<25% before get to sensor

• Reality even worse:
 • Gratings block light within ~ \(\lambda/4 \)
 • Measured QE ~ 12-15%
Enhanced ASPs for Quantum Efficiency: Less Metal

Interleaved diodes: 50% higher QE, 2x better density

Phase Gratings: ~ 2.5x better QE

Better QE but worse modulation depth
Other Caveats

• Wavelength:
 • Tends to degrade modulation depth away from optimum
 • Low angular frequency ASPs work from blue-orange (450-650nm)
 • All pictures will be with white light

• Pixel size:
 • Limited to >3 grating periods (more=better) → ~3μm
 • Can “share” gratings to be better

• Spatial gradients confuse with angle
 • Use “common-centroid” ASPs
Outline

• Motivation
• CMOS-integrated angle-sensitive pixels
 • Basic structure
 • Angle-sensitive SPADs
• Application: Lensless, filterless 3-D FLIM
 • Localizing sources in 3-D volume w/o a lens
 • Combined with SPADs
• Application: Light-Field
 • 3-D photography: computational refocus, ranging and compression
 • Lensless far-field imaging
• Combining light-field + TOF?
Lensless Localization

• “Angle” not defined
• But:
 • ASP responds best to light from certain parts of space
 • If a given ASP shows a strong response, light must come from that region
• Correlate actual responses to predicted values at each location.
\(\beta \) sets resolution, ambiguity

\[
\Delta x, y = \frac{z \cdot \pi}{\beta} \\
\Delta z = \frac{z \cdot \pi}{\beta \cos(\theta_{\text{max}})}
\]
High β: better resolution, worse ambiguity
Diversity: much better

- 2 Fluorescent sources (over a 32x32 array)
- Multiple ASP types ($\beta = 12, 20$)
- Localized based on correlation+ threshold

General, formal description

- Matrix description:
 - each ASP output (y_i) is a weighted sum of inputs (x_j) from different locations in space:
 - can describe as matrix operation: $y = Ax$

- Want A^{-1}
 - But $\dim(y) \propto N^2$ (plane),
 - $\dim(x) \propto N^3$ (volume)
 - A is not square \rightarrow can’t invert.
 - Need more constraints
Assume Sparseness:

- i.e. fluorescent cells in biology, imaged without a lens
- Use tricks from compressive sensing.
- Look for estimated input x that minimizes: $\|y - Ax\|_2^2 + \lambda \|x\|_1$

Lensless 3-D Fluorescent Imaging?

Current methods require a microscope with “filter cube”

Fluorescence requires stimulation light that is MUCH brighter

With ASP arrays, no filter

Use time instead of wavelength to isolate signals
Angle-Sensitive SPAD Array

• 72x60 Array of A-SPADs
 • Includes multiple DTCs, windowing (~75ps LSB)
 • Rolling read-out
Actual Angle Sensitive SPAD Array

- Local 10b counter
- 35μm pitch

- Three phases (α): 0°, $\pm 120^\circ$
- Two orientations, V, H
- Two “frequencies” (β): 8, 15

$\alpha = 180^\circ$
$\alpha = 60^\circ$
$\alpha = -60^\circ$
Lensless 3-D Fluorescent Lifetime Imaging

Can (imperfectly) extract two different time histograms of fluorophores using SPADs

Angular info provides 3-D reconstruction: localizes two sources

3-D Fluorescent microscope on a chip!
Outline

• Motivation
• CMOS-integrated angle-sensitive pixels
 • Basic structure
 • Angle-sensitive SPADs
• Application: Lensless, filterless 3-D FLIM
 • Localizing sources in 3-D volume w/o a lens
 • Combined with SPADs
• **Application: Light-Field Imaging**
 • 3-D photography: computational refocus, ranging and compression
 • Lensless far-field imaging
• Combining light-field + TOF?
Modeling the pixel

Intensity: CM

\[I_0 A(\theta) = \frac{D_{1/2} + D_0}{2} = \frac{D_{1/4} + D_{3/4}}{2} \]

Incident angle: DM

\[\theta = \frac{1}{\beta} \tan^{-1} \left(\frac{D_{1/4} - D_{3/4}}{D_{1/2} - D_0} \right) \]

\[
D_0 = I_0 (1 - m \cos(\beta \theta)) A(\theta)
\]

\[
D_{1/4} = I_0 (1 - m \cos(\beta \theta + 90)) A(\theta)
\]

\[
D_{1/2} = I_0 (1 - m \cos(\beta \theta + 180)) A(\theta)
\]

\[
D_{3/4} = I_0 (1 - m \cos(\beta \theta - 270)) A(\theta)
\]
ASPs as band-pass filters

Angular frequency response

Spatial frequency Ω

$V(\Omega)$

$W(\Omega)$

β/z'

Ω

Impulse response

Low pass

Band pass

Bank of Band pass filters
500 kASP array

Low frequency
Mid frequency
High frequency

Similar to a 2-D Fourier transform
Light-Field Implications

• Entries in a 2-D Fourier transform form a basis set: fully describe angle (up to limit of resolution) → invertible

• Orthogonal → linearly independent, so easily invertible

• Well characterized for natural scenes → they are “good”

• 1-to-1 mapping to more standard light-field (ie micro-lens)
Fourier is its own inverse

Intensity (DC) \[\beta = 12, \text{ here } n = 1 \]

\[\sum_{k=1}^{8} \text{out}(k) \ast \text{wavelet}(k) \]

\[\beta = 24, \text{ here } n = 2 \]
Complex scene, compute refocus

This Also Allows for a Range Map

Use quadrature nature of data with trig. functions

\[P = W \cos \left(\beta \frac{x'}{z'} \right) \]

\[Q = W \sin \left(\beta \frac{x'}{z'} \right) \]

\[\frac{dQ}{dx'} P - \frac{dP}{dx'} Q = \frac{M}{C} = \frac{z'}{\beta} \]

Albert Wang, Sheila Hemami, Alyosha Molnar, “Angle-sensitive pixels: a new paradigm for low-power, low-cost 2D and 3D sensing”, IS&T/SPIE Electronic Imaging 2012, Burlingame Ca
This Also Allows for a Range Map

Use quadrature nature of data with trig. functions

\[P = W \cos \left(\beta \frac{x'}{z'} \right) \]
\[Q = W \sin \left(\beta \frac{x'}{z'} \right) \]

\[\frac{dQ}{dx'} P - \frac{dP}{dx'} Q = \frac{M}{C} = \frac{z'}{\beta} \]
ASPs are Polarization Sensitive

- Want to capture as many dimensions as possible:
 - \(I(x,y,z,t,\theta,\phi,p,\lambda) \)
 - Gratings provide some polarizations: larger pitch than ideal wire-grid polarizer.
- Use the “common mode” of different orientations:
- This can help with specular reflection

Spatial band-pass for image compression

Image capture → Convolution → Filter bank → rounding

Pixel Histogram

Transform Histogram

Coefficient value

Pixel value

Count
ASPs compress images

Low frequency (8x)

Mid frequency (8x)

High frequency (8x)

Transform inversion

Σ

Image Recovery

Transform inversion

24 channel recovery

Data: 90Kbits (All 24 channels)

Full reconstruction

Averaged intensity

Data: 27Kbits (subsampled)

Bitmap image

117Kbits (10:1 reduction)

1.2Mbits (150Kpixel, 8 bit)
Taking this to an extreme: no lens at all!

• Can make lots of ASPs with β up to \sim50 in 180nm CMOS \rightarrow so make a “full set”
• Every harmonic frequency from $\beta=4$ to $\beta=48$ (4000 ASP)
Taking this to another extreme

- Each ASP captures one component 2-D FFT (really, Hartley)
- Provide ~400 independent readings about a scene.
- This is invertible
Taking this to another extreme

- So take pictures in the Fourier-domain
- Invert
- Get a tiny (bad) camera with no lens

Outline

- Motivation
- CMOS-integrated angle-sensitive pixels
 - Basic structure
 - Angle-sensitive SPADs
- Application: Lensless, filterless 3-D FLIM
 - Localizing sources in 3-D volume w/o a lens
 - Combined with SPADs
- Application: Light-Field
 - 3-D photography: computational refocus, ranging and compression
 - Lensless far-field imaging
- Combining light-field + TOF?
Why Combine ASPs + SPADs?

• Lensless, ultra-compact lensless range-finder with (some) spatial resolution
• Optical compression on SPAD signals? \(\rightarrow\) less data
• Complementary capabilities of Light Field, TOF:
 • Light Field:
 • Passive
 • Good at short range
 • Bad at long range (set by baseline)
 • Needs contrast to work
 • Time of Flight:
 • Active
 • Not so good at short range
 • WAY better at “long” range.
 • Does not need contrast
Example combo: “depth fields”

- Use TOF to find depth
- Use light-field to computationally refocus
- Benefit: can use larger aperture for TOF without losing depth of field
Depth Fields Can help with Occlusion

Example Scene: plant occludes monkey

Can focus on the monkey

But depth is corrupted

Count

Can see both in depth histogram of rays

Use just “monkey” rays

Now, much better
Summary: Angle Sensitive Pixels and SPADs

- Pixels sensitive to incident angle, polarization and time.
- Arrays able to capture in 3D image information
- Information in format useful for image processing
Acknowledgements

Albert Wang (ASPs)
Patrick Gill (signal processing with ASPs)
Sriram Sivaramakrishnan (new ASPs)
Changhyuk Lee (lensless camera)
Suren Jayasuriya (Polarization, Depth Fields)

Support:
NIH
DARPA
NSF
MOSIS
Cornell
Combining three viewpoints

Light-Field imaging:
• 3-D scenes generate distributions of light rays \(I(x,y,z,\theta,\phi) \)
• Need to capture enough of this to reconstruct: both angle and space

Frequency-domain image analysis:
• Real scene features easily analyzed in frequency domain
• Gabor filters and FFTs common

Solid-state light capture and analysis:
• Want to build small sensors (<10\(\mu \)m/side): diffractive domain
• Want in standard CMOS